
synergex.com | 800.366.3472 | synergy@synergex.com
2355 Gold Meadow Way, Gold River, CA 95670 1

Synergy Style Guide

1. Naming Conventions

Table of Contents

1.1 Use US-English for naming identifiers.

1.2 Use Pascal and camel casing for naming identifiers.
 In Pascal casing the first letter of each word is capitalized. For example, IsValid.

 In camel casing only the first letter of the second and subsequent words are capitalized. For example, thisIsLocal.

 Two-letter abbreviations in Pascal casing have both letters capitalized. The same is true in camel casing, except at
 the start of an identifier where both letters are lowercase. Abbreviations with more than two letters are capitalized like
 ordinary words in both Pascal and camel casing. Some examples:

1 Naming Conventions ..1

2 Comments and Documentation ..3

3 Coding Structure ..5

4 Exception Handling ..6

PASCAL CASING CAMEL CASING

UIEntry uiEntry

NewImage newImage

SaveUISettings saveUISettings

GetApiParams getApiParams

synergex.com | 800.366.3472 | synergy@synergex.com
2355 Gold Meadow Way, Gold River, CA 95670 2

1.7 Do not add a suffix to a class or struct name.
 Do not add suffixes like Struct or Class to the name of a struct or class.

1.8 Use a noun or noun phrase to name a class or struct.
 Also, if the class involved is a derived class, it’s a good practice to use a compound name. For example, if you have a
 class named File, deriving from this class may result in a class named CustomerFile.

1.9 Do not add an Enum suffix to an enumeration.

1.10 Use singular names for enumeration types.
 For example, do not name an enumeration type Protocols; name it Protocol instead.

1.11 Use a plural name for enumerations representing bit fields.
 Use a plural name for such enumeration types. The following code snippet is a good example of an enumeration that
 allows combining multiple options:

1.12 Do not use numeric digits that can be mistaken for letters, and vice versa.
 For example:

 begin

 data b001 ,boolean

 data lO ,int

 data I1 ,int

 end

As an example, do not use definitions like

public method Write ,void

in req stringValue ,string

public method Write ,void

in req intValue ,int

public enum SearchOptions

CaseInsensitive ,^x(0001)

WholeWordOnly ,^x(0002)

AllDocuments ,^x(0004)

public method Write ,void

in req value ,string

public method Write ,void

in req value ,int

Backwards ,^x(0008)

AllowWildcards ,^x(0010)

endenum

Instead use

1.3 Do not use casing to differentiate identifiers.
 Some languages, like C#, support distinguishing identifiers by case. Synergy/DE does not. Do not attempt define a
 type called A and a in the same context.

1.4 Use abbreviations with case.
 Do not contract words in an identifier but do use well-known abbreviations. For example, use GetWin instead of
 GetWindow. Use well-known abbreviations such as UI instead of UserInterface.

1.5 Do not use an underscore in identifiers.

1.6 Name an identifier according to its meaning and not its type.
 Avoid using language-specific terminology in the names of identifiers.

synergex.com | 800.366.3472 | synergy@synergex.com
2355 Gold Meadow Way, Gold River, CA 95670 3

1.13 Built-in aliases to reference types should be all lowercase.
 All built-in types should be lowercased. For example, string, boolean, a, i, int, etc.

1.14 All built-in reference types should be mixed case, beginning with an uppercase letter.
 Built-in reference types like System.Object and System.String should be mixed case, beginning with an
 uppercase letter.

1.15 All coding should be lowercase.

1.16 All .includes should be double quoted.

1.17 In a .define, the identifier being defined should be uppercase.

1.18 Naming items in Visual Studio

Using this naming convention, items will be named according to where they are placed in the form (e.g., if form name is ISAMUtils,

main tab is ISUTL, and sub tab is Reload, check box A would follow the format of cboxISAMUtilsISUTLReloadA). Also, any buttons or

fields associated with an item should have the same naming standard (i.e., a button associated with that check box would be coded as

btnISAMUtilsISUTLReloadA). By following this format, you will know where a specific item is in the form when coding.

Button: btn

Check Box: cbox

Combo Box: combox

Label: lab

Radio Button: rbtn

Text Box: tbox

Panel: pan

Tab Control: tabctrl

2. Comments and Documentation
2.1 All source code should have a disclaimer header.

Example:

;; Title: <FILENAME>

;; Type: Function | Subroutine | Method | Program | Include file

;; Description: <BRIEF DESCRIPTION OF ROUTINE ETC.>

;; Author: <NAME>, Synergex Professional Services Group

;; Copyright© 2009 Synergex International Corporation. All rights reserved.

;; WARNING: All content constituting or related to this code (“Code”)
;; is the property of Synergex International Corporation (“Synergex”)
;; and is protected by U.S. and international copyright laws. If you
;; were given this Code by a Synergex employee then you may use and
;; modify it freely for use within your applications. However, You may
;; not under any circumstances distribute this Code, or any modified
;; version or part of this Code, to any third party without first
;; obtaining written permission to do so from Synergex. In using this
;; Code you accept that it is provided as is, and without support or
;; warranty of any kind. Neither Synergex nor the author accept any
;; responsibility for any losses or damages of any nature which may arise
;; from the use of this Code. This header information must remain
;; unaltered in the Code at all times. Possession of this Code, or
;; any modified version or part of this Code,indicates your acceptance of
;; these terms.

synergex.com | 800.366.3472 | synergy@synergex.com
2355 Gold Meadow Way, Gold River, CA 95670 4

2.2 Temporary comments should begin with a single semicolon (;)
 These comments should also start in column 1.

2.3 Comments should begin with two semicolons (;;)

2.4 Documenting comments should begin with three semicolons (;;;)

2.5 All comments should be written in US English.

2.6 All comments should be aligned with the code.
 A comment should line up with the beginning of the code it’s commenting on. See 2.8 for an exception to this
 guideline.

2.7 No comments should appear at the end of a line of code.
 With the additional indentation, the comments are easily lost at the edge of the editor window. Rule CD008 is an
 exception to this rule.

2.8 Comments on data definitions should appear on the same line.
 A data definition comment should appear on the same line as the definition itself (regardless of whether the definition is
 in the data division or part of a DATA statement). The comment should begin with two semicolons.

2.9 Use XML tags for documenting types and members.
 All public and protected types, methods, properties, etc., should be documented using XML tags. Using these tags will
 allow IntelliSense to provide useful details while using the types. Also, automatic documentation generation tools
rely on these tags.

 Section tags define the different sections within the type documentation.

 Exceptions: Private and nested classes do not have to be documented in this manner.

2.10 Internal routines (labels) are prefixed with a separating comment of 78 “-” characters.
 This helps to break up the code and identify internal routines.

2.11 Only the header and labeling comments may start in column 1.

SECTION TAGS DESCRIPTION LOCATION

<summary> Short description Type or member

<remarks> Describes preconditions and other additional information Type or member

<param> Describes the parameters of a method Method

<return> Details the return value of a method Method

<exception> Lists the exceptions that a method or property can throw Method or property

<value> Describes the type of the data a property accepts and/or returns Property

<example> Contains example (code or text) related to a member or type Type or member

<overload> Provides a summary for multiple overloads of a method First method in an
overload list

synergex.com | 800.366.3472 | synergy@synergex.com
2355 Gold Meadow Way, Gold River, CA 95670 5

3. Coding Structure
3.1 The namespace declaration should begin in column 1.

3.2 The class definition should be indented one level from the namespace.

3.3 A public class name should begin with a capital letter.

3.4 A private or protected class name should begin with a lowercase letter.

;;example namespace

namespace SynPSG.ChronoTrack.DataEntities

;;**

;;A public class

;;**

public abstract class DataEntity

;;**

;;A private class

;;**

private class ioTypes

endclass

endclass

endnamespace

3.5 Declare all class fields at the beginning of the class.
 All class fields should be declared at the beginning of the class definition, in the following order:

• Public fields

• Protected fields

• Private fields

3.6 Member fields should be indented one level from the class declaration.

3.7 Public field names should start with an uppercase letter.

3.8 Private field names that represent public properties should begin with a lowercase m.
 This will assist in distinguishing between private data and the public property.

3.9 Group together methods and properties with same access levels.
 Include them in the following order:

• Public

• Protected

• Private

synergex.com | 800.366.3472 | synergy@synergex.com
2355 Gold Meadow Way, Gold River, CA 95670 6

3.10 Method declarations should be indented one level from the class declaration.

3.11 The method accessibility should be included.

3.12 Public method names should begin with an uppercase letter.

3.13 Private and protected methods should begin with a lowercase letter.

3.14 The return type of the method should be tabbed one indent from the method name and preceded
 with a comma.

3.15 Arguments should be indented one level from the method declaration.

3.16 The argument name should begin with a lowercase character.
 Arguments are private to the method and so should begin with a lowercase letter.

3.17 Every argument must list its modifiers (REQ, INOUT, etc).

3.18 The argument types should match the indent level of the method type.

3.19 The end of the argument list should be identified with an endparams statement.
 The endparams should be indented one level from the method declaration.

3.20 Private method data definitions should be indented one level from the method declaration.

3.21 Property declarations should be indented one level from the class declaration.

4. Exception Handling
4.1 Only throw exceptions in exceptional situations.
 Do not throw exceptions in situations that are normal or expected (e.g., end-of-file). Use return values or status
 enumerations instead. In general, try to design classes that do not throw exceptions in the normal flow of control.
 However, do throw exceptions that a user is not allowed to catch when a situation occurs that may indicate a design
 error in the way your class is used.

4.2 Do not throw exceptions from inside destructors.
 This is an issue for .NET. When you call an exception from inside a destructor, the CLR will stop executing the destructor,
 and pass the exception to the base class destructor (if any). If there is no base class, then the destructor is discarded.

4.3 Only re-throw exceptions when you want to specialize the exception.
 Only catch and re-throw exceptions if you want to add additional information and/or change the type of the exception
 into a more specific exception. In the latter case, set the InnerException property of the new exception to the
 caught exception.

4.4 List the explicit exceptions a method or property can throw.
 Describe the recoverable exceptions using the <exception> tag.

 Explicit exceptions are the ones that a method or property explicitly throws from its implementation and which users
 are allowed to catch.

synergex.com | 800.366.3472 | synergy@synergex.com
2355 Gold Meadow Way, Gold River, CA 95670 7

4.5 Allow callers to prevent exceptions by providing a method or property that returns the object’s
 state.
 For example, consider a communication layer that will throw an InvalidOperationException when an attempt
 is made to call Send() when no connection is available. To allow preventing such a situation, provide a property such
 as Connected to allow the caller to determine if a connection is available before attempting an operation.

4.6 Throw informational exceptions.
 When you instantiate a new exception, set its Message property to a descriptive message that will help the caller to
 diagnose the problem. For example, if an argument was incorrect, indicate which argument caused the problem.

4.7 Throw the most specific exception possible.
 Do not throw a generic exception if a more specific one is available.

4.8 Only catch the exceptions explicitly mentioned in the documentation.
 Do not catch the base class Exception or ApplicationException. Exceptions of those classes generally mean
 that a non-recoverable problem has occurred.

